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Abstract. Extended ERST supersymmetry, wherein the ghosts are treated equally, can be 
viewed as the Grassmann inhomogeneous rotation group in two dimensions, Sp(2) A T(2). 
The representations are labelled by pseudomass and pseudospin, and the physical state 
vectors correspond to wavepackets over the fermionic momentum. Irreducible field rep- 
resentations are constructed. 

1. The BRST superalgebra 

If one treats (Bonora et a1 1981) the fictitious ghost and auxiliary fields that accompany 
a quantised gauge field, in an arbitrary covariant gauge, on an equal footing (Delbourgo 
and Jarvis 1982), one discovers that they transform into one another according to the 
extended BRST superalgebra: 

{ P m ,  P n ) = O *  

The corresponding supergroup, Sp(2) A T(2), can be regarded as the Grassmann version 
of the Euclidean group in two dimensions. In the algebra (1) the indices are two-valued 
(say 1, 2) because they encompass the BRST and the dual transformations. The P 
generate the supertranslations while the J (symmetric in their indices) rotate and scale 
the ghosts; see 0 3. We adopt the consistent reality and finite-dimensionality assign- 
ments: 

P ; =  Pz and J : l  = J 2 2  J : 2  = -J12  

above, with the metric v I 2 =  1 used to raise and lower indices according to the rules 

P m  = V m n P "  T i m T m n  = 6 ' n  etc. 

Since this is the fermionic analogue of an inhomogeneous rotation group, we may 
anticipate that its representations will bear certain resemblances to the familiar PoincarC 
group representations. That is indeed the case, in that analogues of mass and spin 
can be used to characterise the eigenstates of the superalgebra. However, when the 
'momentum' is used to complete the labelling of eigenvectors, the 'states' are unusual 
because they yield a-number eigenvalues for the fermionic operators and, if adopted 
as they stand, can give rise to nilpotent eigenvalues of observables, which is physically 
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nonsensical. We show in the appendix, with reference to the Grassmann oscillator, 
that the correct way to circumvent this problem is to define 'wavepackets' over such 
idealised Grassmann states; the procedure is no different in principle to what one is 
accustomed in ordinary wave mechanics for obtaining normalisable physical wavefunc- 
tions as superpositions of monochromatic functions. Given that the 'Dirac notation 
can be consistently generalised to incorporate Grassmann operators and states (see 
the appendix for fuller confirmation), we investigate in this section how to set up and 
label the eigenvectors of the extended BRST superalgebra. In the following section we 
will show how to construct the irreducible fields for these representations and in the 
final section we shall compare our work with other treatments of the BRST group 
especially for the case of translationally trivial (i.e. 'physical') states, p = 0. 

The Casimirs which label an irreducible representation have to be scalar and 
supertranslation invariant. Clearly, the (nilpotent) squared pseudomass 

p 2  = PkPk/2  = P2PI (2) 
will do, whereas JmnJm" is unacceptable. However, we may define a pseudospin 
operator, the analogue of the Pauli-Lubanski vector for the PoincarC group, namely 

Wk/m = P k J I m  + P/Jmk P m J k /  = J /mPk  + J m k P /  J k / P m .  (3) 
I t  is translationally invariant, 

i W k / m r  p n } = o  

and closes on itself as well as the 'momentum', 
(4) 

{ Wklm, Wpqr} = i(PPvqk + Pq7)7pk) Wrrm +cyclic permutations in p ,  q, r and k, 1, m 

just like the Pauli-Lubanski vector operator. Obviously the squared pseudospin 
( 5 )  

W 2  = WklmWklm/48 (6) 
can be taken as the second Casimir (nilpotent) operator of Sp(2) hT(2). Because it 
involves the square of P, each component of which is nilpotent, it is straightforward 
to prove that 

Wk/mWkIm = 6pkpkJmnJmn (6') 
and as we shall presently see, the actual spin j of an irreducible finite-dimensional 
representation is determined through the relation, 

(6") 
The case p2  = 0 is rather special and is postponed to 0 3. 

The only remaining question is how we are to label the rest of the basis vector, i.e. 
find the remaining operators of the 'complete (anti)commuting set'. There are at least 
two possibilities. 

(A) The first is the straight analogue of the PoincarC states 1 j ; p ) .  It is to use the 
eigenstates ( j ;  p }  of the full Grassmann momentum P. The Pk are a numbers now and 
the 1 )  signifies that the representation is non-unitary. Of course, in this basis the 
eigenvalue of PkPk/2 is simply p z p , .  Since a 'rotation' of the momentum causes the 
change 

w 2  = p 2 j (  j + 1). 

e x p ( i a ~ / 2 ) ~ ,  exp(-iaJ/2) = (exp ( Y ) i p k  

exp( - iaJ /2)  exp( -i&P)Jj;  p }  = exp( -i&p)l j ;  e"p} 

one readily finds that a finite supertransformation of these states is described by 

(7 )  
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where amn are three rotation parameters ( c  numbers) and & are two translation 
parameters ( a  numbers). 

(B) A second basis is obtained by using a helicity-like variable A in place of the 
‘direction of P’. For convenience we take A to be related to the eigenvalue of JIz. In 
this connection let us momentarily digress and record the isomorphism between Sp(2) 
and the usual rotation group SU(2) via the identification of the generators: 

Jlz- -2iJ3 J ,  fs 2( J ,  + iJ2) J22fs2(J I  - iJ2). (8) 
This means that an irreducible finite-dimensional Sp( 2) representation can be expressed 
in terms of a 2 j  symmetric multispinor A (with j = O,;, 1 , .  . . ) upon which the Sp(2) 
generators act as follows: 

- Jk/Amlmz...m2i - i[Vkm,A/ m 2 . . . m z 1 +  T/mlAkm ?... m 2 , +  77km2Aml/ ... m 2 ,  

-k Tlm2Amlk...m2, +. ’ . + 7?km2,Am1m2 I + T ) / m 2 , A m l m z . . . k l .  ( 9 )  

In  this construction one perceives that A, l . ,  is the highest and Az2. is the lowest 
weight of the representation possessing, respectively, the JI2 eigenvalues -2ij and 2ij, 
thereby agreeing with (7). Indeed the general A spinor carrying A ,  indices of type 1 
and A z  indices of type 2, with A I  + A 2  = 2j, has JI2 eigenvalue -i(Al - A 2 ) .  

In this basis then we write our states as l p 2 j ;  A }  and  take 

J,,lp*j; A }  = -2iA/p2j; A}.  (10) 

It is easy to see that a finite Sp(2) rotation is obtained from the normal SU(2) 
representation D( a) by identifying the rotation parameters 

a,=(Yil+(Y22 a2 = i(ali - a z 2 )  cy3 = -2 ia”  (11) 
and making the appropriate continuation. Because PI raises A by 1 and P2 lowers A 
by i, we may define the action of the P on these ‘helicity’ states to be 

PilA)=pilA +$I and P2lA) = PzlA -1) 
so as to obtain the correct eigenvalue for the Casimir PkPk.  In this manner the action 
of all the operators is totally fixed. 

2. Field representations 

In gauge theories, it is more conventional to consider functions @( 6)  as representations 
of S p ( 2 ) ~ T ( 2 ) ,  where 8 is a Grassmann coordinate space which is appended to 
spacetime. This is the spirit of superspace and superfields. The generators of the 
algebra act as differential operators on these functions: 

pk@ = ia@’/aok = i d k @  
(12) 

In (12) acts as a Sp(2) spin operator in the same way that J acts on multispinors 
in (9). It is then relatively easy to set up  the eigenfunctions corresponding to the 
choices of basis (A)  and (B)  of the previous section. 

(A) Because we are dealing with P eigenfunctions, it is perfectly obvious that @ 
must have the form 

J k / @  = [i( 8Ldl + 8 / d k )  -k x k / ] @ .  

@ ( e )  = A  exp( i&pk)  
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where A is independent of 8. If we then want a ‘spin j’ representation, we must clearly 
choose A to be a multispinor of type (9). It is then easy to see that 

Wk/,Wk‘m@=48j(j+ l)pkpk@ 

as anticipated earlier. This finally means that the representation functions in this 
particular basis are 

I m , .  . . ~ 2 1 ,  eI j ,p}=@m, m,,(e)=Am, m z ,  e x ~ ( i e ~ )  (13) 

(B) Instead, using eigenfunctions of JI2 ,  we find that the expansion coefficients 
of @: 

@( 6 )  = a + 6kbk + 6kekC/2 (14) 

must obey 

p 2 a  = c p’b = 0 

and 

C I 2 a  = -2iAa C,2b1 = -2i(A + f ) b ,  CI2b2 = -2i(A -4)b2.  

Consequently the expansion coefficients must be taken to equal 
2 a = A , ,  2 2  b, = ( pkA, 22 + symmetrisation over k )  c = p  a 

where the number of 1 and 2 indices on the multispinor A yield ‘helicity’ A. It is then 
clear that (6”) will automatically be satisfied (the b and c components become 
irrelevant). Thus, for this basis, 

@ l l  2 2 (  e )  = (11 . . . 22e  ip2j, A }  

= (1  +p20kBk)All  2 7 +  Ok(pkA,l 22+symmetric permutations). 

This completes our discussion of the field description. We must now compare our 
work with other treatments of the extended BRST group representations, focusing our 
attention on the limit Pk + 0 where the states become ‘physical’. 

3. Physical and null states 

Here we shall establish the connection between the algebra (1) and earlier important 
references to this subject (Kugo and Ojima 1979, Nakanishi and Ojima 1980, Bonora 
er a1 1981, Nishijima 1984). The conventional treatment introduces the ghost charge 
Qc and the generators Qe and OB of BRST and BRST transformations. The transcription 
to our notation is 

Q c o  J i z  OB ++ Pi Q B + + P 2 .  

This subset generates a U(  1) A T(2) subalgebra. However, soon after the discovery of 
this limited subalgebra, it was recognised that gauge theory (Nakanishi and Ojima 
1980) and gravity in the ‘Landau’ gauge admitted a large choral symmetry group 
(Nakanishi 1982) which included the two generators, Q = Q(c, c )  and 0 = Q(C, P), 
among many others. These satisfied the extra commutation rules 

i[Qc, 91 = 2Q i[Qc, Q1= -2Q 
(15) [ a  01 = 4 i a  [(?, QB1=2iQB [0, Q B 1 = - 2 i g B *  
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Our own treatment (Delbourgo and Jarvis 1982), which carries over to any gauge, lets 
us identify the remaining Sp(2) generators as 

Qc-’JII Q ++ J** 

and allows them both to be conserved. Thus we have regained the starting superalgebra 
(1). In our version, with the reality properties stated in 0 1, the ‘ghost number’ or 
eigenvalue of JI2 ,  corresponds to -2iA, where A is the helicity label. 

The ‘charge’ operators above can be expressed as time integrals over Noether 
currents in the standard manner. Particularly relevant are the generators of Sp(2) 
transformations: 

Jv = i wIDfiwl da’ (16) I 
where w is the Sp(2) ghost doublet. Equally important is the fact that one can write 
(Bonora et a1 1981) 

J l j  ={Pt, R ] } + { p , ,  4 1  (17) 
where 

R I =  wIA, du‘ I 
because of the equal-time commutators. 

The representations of U( 1) A T(2) were exhaustively studied in the early 1980s. 
Greater strides were taken by Nishijima who considered the enlarged algebra SU(2) A 

T(2), although in his case the charges J , ,  and J22 were not conserved except in the 
Landau gauge. Nevertheless he was able to identify three types of irreducible rep- 
resentation: singlets, quartets and  infinite chains; he excluded the last case as being 
infinite dimensional and  thus unrealistic and  we too have done the same by confining 
our Sp(2) basis to a finite-dimensional one (whence the reality conditions on the Jo) .  
Nishijima’s quartet states simply correspond to the basis vectors stated in 1(B) and  
2(B), but of course our own study has stressed the importance of the Casimirs of the 
extended group and the usefulness of Grassman vectors. 

It remains to say a few words about the situation when the supertranslation group 
is trivially represented, P + 0, since both the Casimirs p 2  and w 2  of (2)  and (6) disappear. 
This case is important because ‘physical’ states must be BRST invariant (like the quantum 
action) at the very least. In that circumstance we should focus on the Sp(2) group 
and  its Casimir, which roughly speaking is the ratio of w 2  to p 2  and non-zero in general. 
If it happens that the ghost charge, or eigenvalue of JI2, does not vanish then it is 
easy to show that 

J & ) =  -2iAljA)=({P,, R , } + { P * ,  ~ , } ) l j ~ )  
= P,IxJ + P*/Xl) (19) 

1x0 = R ,  l j A )  (197 

where 

proving that 1 j A )  is ‘null’ in the standard parlance. This is one of the principal theorems 
in this BRST area; there are a few corollaries (Bonora et a l )  and we have nothing 
further to add  on that score. Remember that the genuine physical states must also 
carry zero ghosr charge, i.e. have A = 0, and these are the ones that correspond to BRST 

singlets. 
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Appendix. Grassmann states and the Grassmann oscillator 

The one-dimensional fermionic oscillator is defined by the algebra, { Q, 0’) = 1, where 
0’ creates one unit fermion number and  Q destroys it. In  the Bose case, we know 
that we can construct (coherent) states which are eigenfunctions of the destruction 
operator; let us analogously define the Grassmann states 

Is) = exp(Q’q)lO) = lo) - 411) (AI )  

where 10) is the ground state (annihilated by Q )  and q is an  a number. This is to 
ensure that 

Q / q )  = 414). 

(sl=(Ol exP(s*Q)=(ol+q*(11 (slot= (914*. 

The conjugate relations are 

Also it is simple to establish the completeness relation: 

1 = /O)(Ol+ IN11 = j- dq* dq  14) exp(-q*q)(ql 

as a Berezinian integral over Grassmann states, in complete analogy to the Bose case. 
If we then define an  observable (something like a Hamiltonian) as the operator 

H = Q’Q and take the Grassmann state expectation value 

(91Hlq)  = 4*4, 

we seem to be led into an  absurdity, since the result is a nilpotent real number! This 
is quite unacceptable for a physical operator. However this is no cause for despair 
and the rejection of such Grassmann states. We are familiar with such occurrences in 
ordinary wave mechanics; pure eigenstates of momentum are not permissible either 
(though we can get round them by coping with delta functions and other distributions) 
because they are not normalisable. Strictly, we should deal with momentum 
wavepackets centred about some average value. Let us adopt the same attitude for 
the Grassmann oscillator states lq) and look for superpositions over them to see if 
they will prove physically acceptable too. 

A good example is provided by the standard (normalised) coherent state 

I C ) =  ( / O ) + C / l ) ) / ( l + ~ C / ~ ) ” ~  

(clHlc) = IC /? (  1 + I C / * ) - ’  

with its sensible expectation value 

because c is an ordinary c number. In fact it is easily shown that the overlap of this 
physical state with a Grassmann state must equal 

( 9 ~ ~ ) = ( l + q * c ) / ( l + l c ~ ~ ) ! ’ ~ = e 4 * ‘ / ( 1 - t ~ ~ / ” ) ’ ’ ~ .  (A31 
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It is perfectly acceptable to use this kind of superposition over the unphysical 14) to 
create the physical states of the theory. Providing one is happy to include wavefunctions 
that are polynomials in Grassmann variables, such as (A3), and adopts the normal 
conventions of Grassmann integration like (A2), there are no signs of any inconsisten- 
cies anywhere in such an  extension of the Dirac formalism. 

All this becomes more convincing if we generalise to the N-dimensional Grassmann 
oscillator. A recent paper by Finkelstein and Villasante (1985) makes extensive use 
of Grassmann variables in order to obtain the wavefunctions and Green functions as 
analogues of the usual bosonic Hermite representation; it forms a helpful supplement 
to this appendix. Here we have a set of N annihilation and creation operators, obeying 

(91, Q3 = 8:. (A41 

Once again, since all the Q, anticommute with one another, we construct the Grassmann 
eigenfunctions 

Is) = exp(Q:q,)lO) = 10) - q11i) + iq ,q , l i , j )  - . . . 
I i J =  Q;Q:lo, 

etc, to be eigenstates of the various annihilation operators: 

where the q1 are a numbers. The completeness relation is expressible as a Berezinian 
integral over the Grassmann states: 

1 = /o)(o/+ l i ) ( i / + i l i ,  j ) ( i ,  j l + .  . . 

= 1 dNq* d N q  1s) exp(-qTq,)(ql. 

Any physical state should then be written as a superposition over the 1s); for instance, 
an ordinary coherent state can be written as an integral over 

multiplied into the Is), even in the N-dimensional problem, where c is a c number. 
Or, more generally, allowing for arbitrary Fock wavefunctions coefficients c, we can 
envisage the general Grassmann packet 

(9 1 c) = 1 + q:c, +;q:qj*c, +. . . 
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